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Abstract

Bachelor of Engineering (Hons.)

LUMIN: Light-sheet Microscopy Analysis Unified with Distributed and

Domain-Randomized Generative Models

by Chaitanya Kapoor

Cell segmentation is a foundational, but non-trivial task for analyzing microscopy images. It

often serves as the first step to quantify biological phenomenon (e.g., cellular behavior). As the

neuroscience field works towards mapping whole-brains of larger organisms with microscopy, the

datasets increase proportionately in size. With this high influx of data, there is a growing need in

the field for software tools that can process such large-scale datasets. In this work, we develop a

distributed image segmentation workflow that leverages cloud and high-performance computing

infrastructure to reduce inference times. Further, existing deep learning segmentation networks

require a large pool of human-annotated labels to perform segmentation on real light-sheet

microscopy datasets. To mitigate this, we build on an existing domain-randomized generative

model, AnyStar, to synthesize training datasets that account for observed image acquisition

variances in light-sheet microscopy data, which we term AnyStar++. We train a zero-shot deep

learning models on our datasets, and use it to perform inferences of cellular structures in unseen

light-sheet microscopy data. We also conduct preliminary analyses to compare the segmentation

results to existing models (i.e. Cellpose, AnyStar). Through this work, we lay a foundation for

developing zero-shot deep learning models that can robustly and accurately perform segmentation

on whole brain light-sheet microscopy datasets.
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Chapter 1

Introduction

Neuroscience is the study of the nervous systems of living organisms to answer affective (e.g.,

influence of emotions) and effective (e.g., influence of stimuli) questions of the brain, its structure,

and what it does in response to both internal and external stimuli.

Why study the brain? Because nobody understands how it works (yet!) [46]. Modern computing

and software has scaled at a tremendous pace, which has fueled advancements in the field [88] at

an increasing rate. For instance, a suite of tools has enabled an ongoing effort, at the nanoscale,

to construct the connectome, or simply put, neuron connectivity diagram of fruitfly brains [24,

25, 35, 50, 54, 73].

On the other spectrum of scales, macro-scale studies draw attention towards tasks such as

whole-brain imaging [86], large-scale brain networks [9, 78], and cross-region brain interactions.

Scientists believe that this level of analysis could be climacteric to understand how large-scale

brain activity patterns give rise to cognitive functions, behavior and consciousness.

Undoubtedly, we will someday be able to simulate brains of primates in-silico, or perhaps grow

brains in petri-dishes. It has been speculated that the growth of deep learning will come to a

gradual halt [79, 63, 66], only to turn to neuroscientific insights to design biologically-constrained

neural networks, that better emulate brain function.

This makes the study of brains in the 21st century particularly exciting. Neuroscience is unique,

in a way that it ties some of the most abstruse disciplines—chemistry, biology, deep learning to

answer elusive questions about the brain. Being a nascent field, the rate of development of tools

to answer such questions is far outstripped by the deluge of data [10, 80] that is generated by

labs around the world.

In this project, we turn our focus to build tools that enable large-scale image segmentation,

to aid biologists in tasks such as cell phenotyping [96, 68, 48], neuronal circuit mapping [82,

1



Chapter 1. Introduction 2

49] and in-situ transcriptomic profiling [52, 2, 14, 62]. We begin by describing the physics

governing Light-Sheet Microscopy, followed by a review of state-of-the-art techniques for image

segmentation (Sec. 1.2), and domain randomization (Sec. 1.3). In light of the aforementioned

challenges, we conclude by formulating our problem statement, and the tools designed as part of

this thesis to advance the field.

1.1 Light-Sheet Microscopy

Imagine we have with us a “magical” flashlight, which has the power to shine a super thin and

(almost) flat sheet of light, like a piece of paper. Now let us also pretend that we have an opaque

toy block with lots of small objects inside it, some of which reflect light, that we wish to look

at. We now shine our magical flashlight through this toy block—this thin sheet of light only

illuminates a single plane of the block at a time. Since this plane has been illuminated, we can

now capture a picture of the visible objects (i.e. those reflecting light). We then sequentially

step through the entire toy block, till we have captured all individual layers. We can now stack

up images from each of the individual layers, one on top of the other, to create a 3D volume of

the toy block, without having to cut it open.

Figure 1.1: Light Sheet Microscopy. Successive planes of a biological specimen are
illuminated by exciting fluorophores.

The above thought experiment, in essence, describes the process of light-sheet microscopy (LSM).

The “light-sheet” allows a selected plane of a biological sample to be illuminated, by exciting

fluorophores in its selected focal volume, and is hence also known as Selective Plane Illumination

Microscopy (SPIM), which allows one to visualize, at high-resolutions (∼ 250 nm) [1, 26, 12, 37].

However, resolutions often vary based on the wavelength of light emitted by the fluorophores.

Practically, in a light-sheet microscope, a plane of laser light is used to illuminate the selected

plane (Fig. 1.1). This allows for optical sectioning, that is, reduction of out-of-focus fluorescence

and background noise [1].
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A key advantage of LSM is its ease with which it allows in-vivo imaging of live animals, which

allows one to gain insights into neural activities during the course of biological processes [43, 28,

89].

Several variants of LSM have since been developed, addressing experimental requirements, and

hence having their own set of tradeoffs and associated challenges. For instance lattice light-sheet

microscopy [12], allows for rapid image acquisition of samples, and hence reduces the effect of

phototoxicity. However, as a result of its limited field size, acquisition deteriorates in quality over

larger sample depths. Similarly, Swept Confocally-Aligned Excitation (SCAPE) microscopy [8,

85], solves the problem of resolution by illuminating the focal plane of interest with an oblique

light-sheet (Fig. 1.2). These advancements have expanded the capabilities of LSM, allowing us

to image thicker tissue samples and increase speeds of acquisition among others, hence increasing

its utility in diverse biological applications.

Figure 1.2: Oblique Light-Sheet Microscopy. An oblique plane of light is launched at the
specimen of interest, and fluorescence is captured by the same objective lens.

1.1.1 Artifacts in Light-Sheet Microscopy

Despite having cleared tissue (i.e. make a biological sample transparent), subsequent analysis of

neuronal bodies still remains a challenge for several reasons. For one, LSM images are usually

anisotropic, engendering a slew of different artifacts along each pair of 3D planes. We describe

and illustrate some of these below.

Spherical Aberrations. In LSM, as in any other optical system, aberrations lower the overall

quality and accuracy of microscopy data. This is typically a result of the lens having different

focal lengths throughout, as a result of its intrinsic curvature. As a result, the formed image

appears to be smeared, and out-of-focus as shown in Figure 1.3.
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Figure 1.3: Mechanism and Effect of Spherical Aberrations in Light-Sheet Mi-
croscopy Images. (Top) Path of light rays that results in spherical aberrations, due to
mismatched focal lengths. (Bottom) Example images before and after correction of the aberra-

tion, which results in a sharper image. Figure from [19].

Stripe Artifacts. A key characteristic of stripe artifacts is the appearance of linear, streaky

patterns superimposed on the image (Fig. 1.4). Typically, this is a result of either heterogeneous

illumination, or the scattering and absorption of different wavelengths of light by fluorophores in

a tissue sample, that is, dense and opaque tissue regions of a specimen would interact differently

with light.

(a) (b)

Figure 1.4: Stripe Artifacts in Light-Sheet Microscopy Images. (a) Stripe artifacts in
an imaged section. (b) Post-processing removes the stripes from the region of interest. Figure

from [98].



Chapter 1. Introduction 5

Shadow Artifacts. Shadow artifacts manifest themselves as either completely dark region or

streaks, obscuring parts of the sample. This gives an appearance of having incomplete data

(Fig. 1.5). Variations in refractive index within a tissue sample often cause light to bend, and

potentially scatter, exacerbating the issue. This is especially common in heterogeneous samples,

where different components possess different refractive indices.

(a) (b)

Figure 1.5: Shadow Artifacts in Light-Sheet Microscopy Images. (a) Shadow artifacts
make parts of the acquired image appear incomplete and obscured. (b) Increasing the numerical
aperture of the microscope minimizes shadows by focusing light into a finer beam. Figure from

[56].

1.2 Image Segmentation

Image segmentation, is one a foundational task in computer vision. The objective is to partition, or

segment, an image into multiple hierarchical regions. One prominent task in image segmentation

is that of instance segmentation, where, the objective is to separate not only different object

entities in an image, but also identify each instance of the concerned object. This is unlike

semantic segmentation, where the task objective is to group image pixels into semantically

meaningful categories without distinguishing between different instances of the same object

category. This gives instance segmentation the ability of precise localization and recognition. As

a result, this spatial information is particularly applicable across a vast range of applications,

such as autonomous driving [99, 21], medical imaging [100, 16, 87] and robotics, where accurate

identification and delineation of objects are crucial for decision-making and interaction with the

environment.

Through the lens of deep learning techniques, instance segmentation is typically accomplished

using Convolutional Neural Networks (CNNs) [72, 17]. These networks leverage their intrinsic

ability to learn hierarchical representations of visual features extracted using image kernels, as

the task entails both fine-grained spatial reasoning and high-level semantic understanding.
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Figure 1.6: U-Net Architecture. A typical characteristic of the U-Net architecture is its
contracting path for capturing context and a symmetric expanding path for precise localization

by learning latent vector representations at its bottleneck.

However, despite these multitudes of advancements, few works exist which are able to lend

themselves for useful neuroscientific applications, from the perspective of imaging. In particular,

most works make use of networks which are extremely data hungry, making them less than ideal

for applications where there is a lack of ground-truth annotations.

In case of LSM nuclei instance segmentation, which is the focus of this thesis, state-of-the-art

methods depend heavily on a vast amount of annotated data. For instance, Yin et al. [98] train

a 3D U-Net (Fig. 1.6) for vessel segmentation in Zebrafish. This method fails to scale well with

lesser ground truth data. On the other hand, Yang et al. [97] propose the use of a Generative

Adversarial Network (GAN) to address lack of data. However, this does not translate effectively

when one wants to use these models for human brain cell analysis. Several factors are responsible

for this, which we have elucidated in Section 1.1.1.

1.3 Domain Randomization

Bridging the “reality-gap” which distinguishes synthetic from real world data potentially holds

a lot of promise for large-scale, automated image analysis, particularly in biology. At its core,
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domain randomization is a technique where a large variety of data is created for the models to

train on. This, in theory, exposes the model to a large variation of data, and if the variability is

significant enough, the models should generalize to the real world with no additional training.

A useful analogy to this could be the following—imagine we have a robot, and we want to teach

it to find a red ball, but in different rooms. If we teach the robot to search for this ball in a single

room, it may not be able to do well in other rooms, only because the surrounding environment

has now changed. However, now imagine that we have lots of different rooms with different

colors, shapes etc. This way, our robot learns to find the red ball no matter where it is hidden.

Now, when we finally play in a new room, the robot is really good at finding the red ball because

it had practiced in so many different rooms.

In a similar manner, we randomize, using a set of image augmentations, image parameters such

as intensity, shear, resolution etc. to force our neural network to learn essential features of the

objects of interest. This is inspired by a relatively new suite of tools and techniques in the

field of biomedical image segmentation [23, 20, 36, 6] among others. In this thesis, we simulate

cortical sections of the human brain acquired via LSM, and domain randomize the dataset to

train a deep learning model. This enables us to perform inferences on real-world data without

the need to retrain or fine-tune our network, hence using the idea of what is known as transfer

learning [83].

1.4 Problem Formulation

The complexity and size of LSM datasets require modern infrastructure and methods for analysis.

To process such large datasets, we develop a framework that is capable of segmenting cell bodies

in terabyte-scale LSM images by distributing the processing and then stitching the results. To

improve the accuracy of segmentation of LSM data, we build on an existing generative framework

to synthesize training data with domain randomized features. We leverage topological similarities

(i.e. star-convex polygons) of nucleic bodies to synthesize shapes. This allows us to train a

deep learning network on the synthetic dataset, and hence perform inferences on unannotated,

real-world data.

Manual annotation of datasets is time and resource intensive. As a consequence, it is critical

to establish a robust set of metrics, or quantifiable measures to assess the quality of image

segmentation models. Along these lines, we provide a preliminary set of test metrics which we

compute to assess model performance. This has direct implications, in enabling one to gain

insights into model scalability, generalization and applicability for real-world imaging tasks.



Chapter 2

Large-Scale Volumetric Image

Segmentation

In this chapter, we describe a workflow to perform cell body segmentation on large-scale,

volumetric images. We demonstrate results from our pipeline on a 1mm3 section of the human

brain acquired using light-sheet microscopy. Our framework is capable of processing terabyte-

scale images, and addresses the challenge of performing distributed segmentation, and stitching

voxelized chunks to compose a volume at the original resolution.

We describe models that are supported by our framework in section 2.1. In section 2.2, we

describe the data processing workflow, which includes methods to perform distributed stitching of

individual voxels (section 2.2.2). We conclude with post-hoc analysis on evaluating our stitching

algorithm in the absence of ground-truth labels.

2.1 Image Segmentation Models

In this section, we present a description of the cell segmentation models that have been used

for this thesis. A common claim across all models discussed here is their capability to perform

generalist cell segmentation, i.e.: segment cells without the need for model retraining or parameter

tuning. These characteristics make them a suitable choice for conducting fair model evaluations.

2.1.1 Cellpose

Cellpose is a deep-learning based cellular segmentation algorithm that is capable of segmenting

cellular structures across a multiple imaging modalities [81, 59]. To learn a standardized cell

representation, manually annotated masks are transformed to an intermediate representation by

8
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simulating a reversible diffusion process. A key advantage of this representation is that extrema

of a large variety of shapes lie at the geometric center of their segmentation masks. As a result,

the point of convergence of the horizontal and vertical flow gradients is used to recover the

original masks.

A neural network (in this case, a U-Net [72]) is used to predict the spatial flows as computed by

simulating a diffusion process. In addition to the flow, the neural network also predicts an object

localization probability, which enables prediction of cell boundaries. The final segmentation

masks are retrieved by thresholding these localization probabilities.

2.1.2 StarDist

Cell nuclei typically possess a roundish shape in microscopy images. Traditional cell segmentation

approaches either localize individual instances, assuming an approximate shape representation

which is refined iteratively. Such (top-down) methods [53, 69, 70] rely on accurate refinement of

shapes to yield accurate mask predictions.

On the other hand, a different (bottom-up) set of approaches [11, 95, 77, 15] first classify every

pixel in an image to an instance. These predictions are then fused with one another using

methods such as connected-component labeling (Sec. 2.4) to predict a single nucleic instance.

However, in the presence of a high-density of nucleic cells, the fusion of misclassified pixels are

aggravated as errors are propagated across a large number of segmented nuclei. To alleviate

these issues, StarDist [74, 92, 91] bakes in an implicit geometric prior which constrains a neural

network to learn localized shapes in the manifold of star-convex polygons. This class of polygons

is capable of expressing shapes observed across most cellular structures. We provide a brief

description of this below.

Star-Convex Polygons. For an arbitrary set S in a Euclidean space Rn, a star-domain is said

to exist if s0 ∈ S, such that for all s ∈ S, a line segment from s0 to s lies in S.

This definition can be extended to define a star-convex polygon, to be a star-domain whose

boundary is a sequence of connected line segments. For example, an annular ring (Fig. 2.1b)

is not a star domain since a line segment across the diameter of the annulus does not lie in its

star-domain S, which defines the polygon.

For every pixel (i, j), the network regresses a distance {rki,j}kn=1 to the predicted boundary of

the cell along a set of k precomputed radial directions. Along with this, the model also predicts

an object probability, which is filtered using non-maximum suppression to arrive at the final

segmentation mask.
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(a) (b)

Figure 2.1: Example of Star-Convex Polygons. (a) illustrates a line segment connecting
two points in the set S (denoted by green), connected by a line segment. On the other hand, (b)
shows an annular ring where the line segment connecting two arbitrary points does not belong

to the set S.

2.1.3 AnyStar

Borrowing from the idea of implicitly enforcing star-convex geometric priors, AnyStar aims

to synthesize photorealistic blob-like shapes to train a star-convex deep-learning network [23].

AnyStar additionally performs physically-informed augmentations of the images (Sec. 1.3)

to simulate imaging artifacts (e.g., Gibbs ringing [84, 65]). By virtue of sampling multiple

probability distributions to synthesize augmentations, such a scheme can potentially generate

infinite synthetic data and its corresponding labeled pairs to train a deep learning network.

These factors makes the learned network robust to naturally occurring imaging artifacts and

potentially out-of-distribution examples. It also helps to tackle the issue of a lack of annotated

data, by readily synthesizing it.

2.2 Data Processing

In this section, we describe the dataset used for analysis, and the workflow that streams the

dataset, performs distributed computation, and visualization.

2.2.1 Dataset

We make use of a publicly available, light-sheet microscopy (LSM) dataset available on the

DANDI Archive [60, 40]. This dataset contains 1mm3 sections of a human brain, imaged

using LSM. The sections were stained with several markers including anti-NeuN antibody for

https://dandiarchive.org/dandiset/000108/draft
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neuronal cells [33], YOYO for nuclei, and Lectin for blood vessels. Each of the sections were

SHIELD-processed [61] to enable high-throughput screening and imaging of various proteins. The

resolution of the tissue sample is 2.5µm× 3.6µm× 2.5µm, along the (x, y, z) axes, respectively.

We show a representative cross-sectional view from this dataset in Figure 2.2, which can be

visualized in Neuroglancer.

Note that for our analysis, we make use of a singular channel, having anti-NeuN stains.

Figure 2.2: Light-Sheet Microscopy Data. (a) Cross-section of light-sheet data along the
yz axis. (b) Magnified view of an arbitrary region of interest to show the presence of cellular

structures stained with anti-NeuN antibody markers.

2.2.2 Workflow

The workflow to segment large-scale image volumes has several key steps that are shown in

Figure 2.3 and are described below:

• Stream data from DANDI Archive

• Lazy evaluation of data using Dask arrays

• Distributed cell segmentation of chunks

• Chunk stitching

• Visualization

Data Streaming from DANDI Archive. Due to large data sizes and limited local storage, we

stream Zarr [58] arrays that are stored remotely on the DANDI Archive to the local computing

environment. A major advantage of this approach is that it avoids local caching of data, hence

allowing for flexible downstream data processing.

Lazy Evaluation of Data using Dask Arrays. This refers to the technique of deferring any

computations until they are needed (i.e. triggered by a specific user command). We achieve this

https://neuroglancer-demo.appspot.com/#!%7B%22dimensions%22:%7B%22t%22:%5B1%2C%22s%22%5D%2C%22z%22:%5B0.000002564%2C%22m%22%5D%2C%22y%22:%5B0.000003625%2C%22m%22%5D%2C%22x%22:%5B0.000002564%2C%22m%22%5D%7D%2C%22displayDimensions%22:%5B%22z%22%2C%22y%22%2C%22x%22%5D%2C%22position%22:%5B-0.00018780227401293814%2C139745.046875%2C4184.09326171875%2C8922.0791015625%5D%2C%22crossSectionScale%22:4.677852093946981%2C%22projectionOrientation%22:%5B-0.26982349157333374%2C0.2836163640022278%2C-0.017277659848332405%2C0.9200317859649658%5D%2C%22projectionScale%22:8659.286580534965%2C%22layers%22:%5B%7B%22type%22:%22image%22%2C%22source%22:%22zarr://https://dandiarchive.s3.amazonaws.com/zarr/15662576-2df1-4035-a37e-b9f74fd5cb5b%22%2C%22localDimensions%22:%7B%22c%27%22:%5B1%2C%22%22%5D%7D%2C%22localPosition%22:%5B0%5D%2C%22tab%22:%22rendering%22%2C%22shaderControls%22:%7B%22normalized%22:%7B%22range%22:%5B0%2C1339%5D%7D%7D%2C%22name%22:%22OME-NGFF%22%7D%5D%2C%22selectedLayer%22:%7B%22visible%22:true%2C%22layer%22:%22OME-NGFF%22%7D%2C%22layout%22:%224panel%22%7D
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Figure 2.3: Data Processing Workflow. The workflow of processing data, by streaming
Zarr files from the DANDI Archive as Dask arrays to a local computing system. Since the data
is large (≈ 50 GiB) to efficiently load into system memory and run computations, we chunk and
distribute it across multiple parallel threads. Each of the individual chunks are then segmented,
and stitched (Sec. 2.2.2) together to reconstruct the original image stack. We qualitatively
verify our stitching and segmentation algorithms by visualizing it in popular image viewers (e.g.,

Neuroglancer).

functionality by (lazy) loading the streamed Zarr files as Dask arrays and queuing computations,

which in this case is performing image segmentation. This process allows Dask to lazy construct

an internal task graph, which queues all necessary computations that need to be performed. As

an example, we demonstrate lazy evaluation with toy functions for multiplying two numbers in

Listing 1.

1 import dask

2

3 def multiply(num1: int, num2: int):

4 return num1 * num2

5

6 # use a delayed function decorator to enable lazy evaluation

7 @dask.delayed

8 def multiply_dask(num1: int, num2: int):

9 return num1 * num2

10

11 # "eager" computation

12 res = multiply(num1=2, num2=3)

13

14 # a computation is explicitly triggered on a delayed object

15 res_dask = multiply(num1=2, num2=3)

16 res_dask = res_dask.compute()

Listing 1: Lazy Evaluations. The code listing here demonstrates a lazy evaluation. We
define two functions to perform identical tasks (multiplication). In case of the dask.delayed

wrapped function, an explicit .compute() object call is needed to evaluate the desired value.

Distributed Segmentation of Chunks. Since the entire light-sheet volume is too large to

fit into any computing systems RAM, we divide the volume into groups of voxels (i.e. chunks)

which are distributed across computing threads. A specific model then fetches independent voxel

chunks, and performs segmentation. This process has two key advantages:



Chapter 2. Large-Scale Volumetric Image Segmentation 13

1. Maximum compute usage, since all cores and threads used. This form of chunking can be

done since each voxel has locally independent image features.

2. There is no local caching of results, as described in the lazy evaluation section.

After segmenting each individual chunk, a composite volume, that matches the original image

resolution, is stitched while while preserving relative locations to each other in the original

volume. This is done by storing offsets of each voxel in the pixel space. As a result, we can

systematically arrange our voxels in the desired order.

Chunk Stitching. A critical part of segmenting large volumes is stitching individual chunks.

We describe the process of stitching voxels accompanied with an explanation of boundary effects

that need to addressed to preserve the original resolution of the volume while stitching.

In this section, we describe the main components that have been used to stitch chunks (i.e.

groups of voxels), after chunking them for distributed computation. We begin by describing the

idea of connected-component labeling (Sec. 2.2.3). We follow this by detailing certain nuances

that arise when one tries to stitch faces of voxels, whilst preserving the resolution of the original

voxel (Sec. 2.2.5). Last, we introduce the idea of structuring elements, which is used to determine

neighborhood connectivity of pixels.

2.2.3 Connected-Component Labeling

The goal of connected-component labeling is to group pixels in an image into local, individualized

components that share similar intensity values. The topological landscape of grouped pixels is

governed by a structuring matrix (Sec. 2.2.4). We extend this idea to stitch instance segmentation

masks across chunks, when they maybe split as a result of chunking the original image volume,

thus ensuring label consistency.

2.2.4 Structuring Elements

Briefly, a structuring element is used to define a neighborhood of a pixel by defining a local

topology. For example, in the case of connected-component labeling, a commonly used structuring

element for 2D images is a 4-connected neighborhood. Pixels are considered as neighbors if they

share an edge between each other. This can be formalized by the following matrix structure:

Q =


0 1 0

1 1 1

0 1 0

 (2.1)
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where Q is the structure matrix. We illustrate the effect of using such an element on a 2D grid

in Figure 2.4. Since the connections (edges) formed while labeling the adjacency graph are

undirected, it necessitates the structure matrix to be centrosymmetric [90].

Figure 2.4: Connected Component Labeling Example. An image grid where the white
pixels correspond to background and foreground pixels are denoted by 1. The pixels grouped in
blue and red illustrate the presence and absence of a neighborhood, respectively, corresponding

to the 2D structuring element in Equation 2.1.

We extend this idea to 3D, and use a cube as a structuring element.

Q̃ =


1 1 1

1 1 1

1 1 1


Note that here, each element of the matrix represents a voxel. Through this, we attempt to

describe and capture a spatial relationship that describes a cube in 3× 3× 3 neighborhood.

2.2.5 Boundary Effects

A major caveat of stitching individual voxels is preserving the original image volumes dimensions.

Directly stitching chunks together can result in a smaller volume than the original due to local

label connectivity. Since we operate on the chunk boundaries during connected-component

labeling, we must ensure that each chunk is slightly expanded along its borders to maintain

dimensions. One must also be careful to trim the borders by the same amount they were

expanded. This process can be broken into three key steps:

1. Pad borders to align chunked shapes

2. Map a function (connected-component labeling) over a series of chunks having overlap

3. Trim excess padding to maintain image resolution
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Note that while padding, we make use of the reflect boundary condition in Dask. This handles

the chunks borders by reflecting the values at the edges outwards, hence creating a mirroring

effect.

1 import numpy as np

2 import dask.array as da

3

4 # example array

5 array = np.array([[1, 2, 3],

6 [4, 5, 6],

7 [7, 8, 9]])

8

9 # chunk array into (2, 2) blocks

10 dask_array = da.from_array(array, chunks=(2, 2))

11

12 # reflection boundary condition

13 padded_array = da.pad(dask_array, pad_width=1, mode="reflect")

14

15 result = padded_array.compute()

Listing 2: Reflection Boundary Condition. We use the reflect boundary condition to
pad our chunked array. This ensures that volume dimensions are preserved, and prevent our
segmentation model from predicting false negatives. The result of this computation is shown in

Equation 2.2.

This is illustrated with the help of a small example in Listing 2. This padding would yield a

result equivalent to:

array =



5 4 5 6 5

2 1 2 3 2

5 4 5 6 5

8 7 8 9 8

5 4 5 6 5


(2.2)

An advantage of following such a padding scheme is that it prevents a segmentation model

from predicting phantom background pixels, which would then result in spurious connected

components.

Visualization. For interactive visualization of the 3D cell segmentation and stitching algorithm

results, we use Neuroglancer [38] to view the entire volume and Napari [18] to view sub-volumes.

2.3 Stitching Results

We explore both qualitative (Sec. 2.3.1) and quantitative verification (Sec. 2.3.2) of our stitching

algorithm. While we do not have annotated ground truth labels, we make use of certain heuristics
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to quantify the efficacy of stitching.

2.3.1 Qualitative Analysis

We illustrate an example visualization of segmented nuclei using the Cellpose and AnyStar++

Spherical models. The stitching algorithm is model agnostic, and can potentially be extended

to any out-of-the box framework. Note that for both visualizations shown (Fig. 2.5, Fig. 2.6),

we use a randomly selected ROI of an isotropic dimension of 1283 from the dataset. The volumes

are re-chunked to an isotropic dimension of 643 voxels to demonstrate our algorithms results.

Figure 2.5: Stitching of Cellpose Model Inference. Panel (a) shows a randomly chosen,
zoomed-in ROI in the segmented volume. The process of stitching adjacent, distributed voxels is
shown in panels (a1) - (a3) for a single slice. Each of the red arrows highlight the volumes pre-
and post-stitching. (b) Shows a 3D visualization of the stitched volume, where each distributed

voxel is mapped to a different color.

Each of the individual, re-chunked voxels are highlighted with a different color to illustrate

partitions, and show voxel boundaries and spatial offsets.

2.3.2 Putative Analysis

Inspired by the comparison techniques of spike sorting algorithms [93, 29], where there is a lack

of standardized, ground-truth bench mark, we propose the use of some heuristics to quantify the

performance of our stitching algorithm.
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Figure 2.6: Stitching of AnyStar++ Spherical Model Inference. Panels (a1) - (a3)
illustrate the process of stitching adjacent, distributed voxels. Each “section” is labeled with a
different color. Again, nuclei instances pre- and post-stitching are denoted by red arrows. (b)
Shows a 3D visualization of the stitched volume, where each voxel is mapped to a different color.

More concretely, let us assume that we use a modelM for segmenting a volume V of data. To

segment this volume V , we can potentially use different re-chunked voxel sizes. However, it is

critical to note here that all the re-chunked voxel sizes would correspond to the same original

volume V . This would imply that once stitched back to its original resolution, both volumes

must be identical. That is, suppose the that we chunk V into i voxels.

V = {v1, v2, · · · vi}

Now we conjecture that once all vsi are stitched using an ideal algorithm, the original volume

should be formed. Or, concretely, we must have

Vs = V

where Vs is the image volume stitched from the re-chunked voxels. To be able to quantify and

identify this similarity, we propose the use of two metrics:

1. Nuclei Count

2. Intersection over Union (IoU)

Nuclei Count. We count the number of nuclei instances for every stitched volume, and plot

these results in Figure 2.7. Here, we use a randomly selected 5123 volume, and label it as our
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“ground-truth”, which arguably, serves as a proxy for one. We run inferences with this volume

size, without stitching, to assess the base performance of our algorithm. We perform analysis

with varied chunk sizes of {32, 64, 128, 256}.

Figure 2.7: Distribution of Nuclei Count. Variation of nuclei count with different chunking
dimensions. We plot this distribution for 4 different models—Cellpose, AnyStar, AnyStar++

Gaussian, AnyStar++ Spherical.

Intersection over Union. We compute the IoU against a randomly selected 5123 instance mask

volume. It should be noted that each of the instance masks are binarized before computing

IoU. While this eliminates the problem of matching instances across volumes, it fails to capture

the splitting or merging of nuclei across voxel boundaries.

Figure 2.8: Intersection over union for different chunk dimensions. Disribution of
IoU computed across 4 different models—Cellpose, AnyStar, AnyStar++ Gaussian, AnyStar++
Spherical. We compute these values for a range of chunked dimensions: {32, 64, 128, 256}.
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2.4 Workflow Profiling

We profile each of the steps described in the previously mentioned workflow, and describe it in

Table 2.1. Note that we conduct this analysis for two separate models—Cellpose and Anystar-X,

where the latter is used to describe any variant of the StarDist3D-based networks that, which

we train on our synthetic data (Sec. 3.1.1).

Segmentation Algorithm Streaming (sec.) Segmentation (sec.) Stitching (sec.)

Cellpose 0.92 30.53 0.132
Anystar-X 0.89 37.66 0.183

Table 2.1: Workflow Profiling Across Models. We compute the mean runtime for each
of the steps described in our workflow—data streaming from the DANDI Archive, distributed
segmentation of individual image chunks, followed by stitching of the chunked image volume.

For our analysis here, we use a 1283 volume sectioned from the LSM Dandiset. This volume is

chunked isotropically along all 3 axes, having dimensions {64, 64, 64}. It also follows logically

that mean runtime for both segmentation and stitching will change corresponding to the chunk

sizes. We show a visual comparison of time profiles for the above models in Figure 2.9.

Figure 2.9: Time Profile Plot. Run-time differences for three different tasks in the segmen-
tation workflow for the Cellpose and AnyStar-X models.

This workflow was run on a system having an Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz,

2 processing units and a Tesla V100-SXM2-32GB-LS GPU.
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2.5 Discussion

In this chapter, we design an image segmentation framework which is capable of segmenting

terabyte-scale image volumes. We have made the code for this framework available publicly

on GitHub. We describe in detail our workflow for performing distributed segmentation, and

stitching a chunked segmentation mask through connected-component labeling. This leverages

the power of high-performance computing systems which allows one to significantly reduce

inference times. We also perform a qualitative and quantitative test, based on heuristics, of

the proposed stitching algorithm in the absence of ground-truth labels for comparison. We

conclude by profiling runtimes for each of the individual steps in our proposed framework.

These observations allow us to conclude that our stitching algorithm is model agnostic, hence,

potentially increasing its applicability.

https://github.com/lincbrain/lsm-segmentation


Chapter 3

Zero-Shot Segmentation of

Light-Sheet Microscopy Data Using

Domain-Randomized Generative

Models

In this chapter, we describe our algorithm to synthesize image-label pairs that are used to

train a 3D StarDist deep network for performing zero-shot inferences on real world light-sheet

microscopy data. Our image synthesis method builds upon AnyStar [23] to generate more

realistic backgrounds by leveraging steerable filters to directionally spread and sharpen noise. For

each image we generate background and foreground separately and alpha-blend them to produce

a final composite image, which is subject to the same intensity and artifact augmentation routine

as AnyStar. We then train the StarDist3D model, and qualitatively compare the inference results

to AnyStar and Cellpose.

3.1 Image-Label Pair Synthesis

We synthesize image-label pairs in a similar manner as AnyStar, whereby the foreground and

background are created separately and then alpha blended to form a composite image (Sec.

3.1.3). For the foreground, we begin by synthesizing spheres having uniformly sampled radii

corrupted by Perlin noise (Sec. 3.3). For these foreground labels, corresponding backgrounds are

synthesized by sampling intensities from a conditional Gaussian mixture model (GMM) which is

modulated by directionally steered noise (Sec. 3.1.2). We project Gaussian filters to a spherical

harmonic basis, which brings to bear its properties of orthogonality, rotational symmetry and

21
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parity (Sec. 3.2.2, Sec. 3.2.4, Sec. 3.2.3). This is particularly useful in modeling observed

anisotropy of signal noise during image acquisition. Finally, an augmentation sequence is applied

to the synthetic images (Sec. 3.1.4). We also demonstrate example fluorescence microscopy

slices using AnyStar’s synthesis structure, and show a comparison with those synthesized by

our proposed algorithm, which we call AnyStar++.

3.1.1 Label Synthesis

We generate n spheres of radii r, which are sampled from a uniform distribution U ∼ [4, 20]. The

centers of these spheres are initially placed at the vertices of a regularly-spaced 3D grid, which

are then randomly translated. Since cellular bodies are typically non-spherical, the distances dij

between each voxel j and sphere i is corrupted by additive Perlin noise (Sec. 3.3) . The resultant

image grid is now (randomly) zero or reflection padded for simulating varied nuclei distribution.

An initial instance maps is then assigned to each of the corrupted spheres.

3.1.2 Background Synthesis

For a label map L having n instances, an initial image is synthesized by sampling foreground

intensities from a conditional, n-component GMM, where each of its parameters {µi, σi} are
sampled from a uniform distribution for every image. We simulate variable backgrounds to

emulate characteristic staining patterns observed in light-sheet microscopy. To synthesize bright

foreground instances, we repeat the process described previously, of sampling instances from a

n-component GMM.

However, to simulate accurate geometric and topological features in the background, we rely on

a generative model as described in SynthMorph [36] and Neurite [20]. Next, we synthesize a

directionally sharpened background using a steered filter having a spherical harmonic basis as

described in Section 3.4.2. The composite image is formed by alpha blending the foreground and

background images, with the value of α chosen empirically (Sec. 3.1.3).

3.1.3 Alpha Blending

Alpha blending is used to composite a foreground and background image to give an appearance

of partial transparency. Simply put, this technique can be formalized as the following linear

combination

I = αF + (1− α)B
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where I is the composited image, constructed from the foreground (F ), background (B) and a

weighting term (α). Intuitively, α = 0 would correspond to an opaque image, whereas α = 1

would be completely transparent. This is demonstrated in Fig. 3.1.

Figure 3.1: Alpha Blending Example. (a) Background images (blue square), (b) foreground
images (red circle), and (c) composite α blended images for three α values (rows).

Often, separate alpha channels are introduced in images, where an alpha value is encoded for

every pixel in the image. However, in our case, we apply α uniformly to an entire image matrix.

In contrast to AnyStar, instead of replacing non-foreground pixels, we alpha blend the background

with the foreground to better capture artifacts of fluorescence microscopy. Figure 3.2 clearly

shows the difference between using the two approaches to form the corresponding composite

image.

3.1.4 Augmentation Sequence

The final images in our dataset are obtained after passing them through an augmentation

sequence, as detailed in AnyStar [23]. Briefly, each of the volumes obtained from the previous

step are cropped to a 643 subvolume. They are then subject to a series of affine deformations,
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Figure 3.2: Image Composition Comparison. We illustrate differences in the technique
used by AnyStar to compose foreground and background, with our generative model. Row (a)
replaces all non-foreground pixels with a weighted background to compose the resultant image.
On the other hand, in (b), we alpha blend the foreground and background to create a final

image.

applied uniformly across the entire image matrix. As described previously, the type of image

padding used (mirror or reflection) is chosen stochastically to simulate different cell densities.

This is followed by augmenting images with a large set of intensity transforms, which are inspired

by image acquisition artifacts in MRIs—bias fields [39, 32], k-space spikes [41], Gibbs ringing

[84], Rician noise [31], gamma adjustments and cutout augmentation [22]. Each of the axes of

the synthesized voxels are then subject to a Gaussian blur for simulation of partial voluming

(PV) [5, 4], i.e. voxels containing multiple tissue classes which have intensities that are not

accurate for the instance they represent.

Lastly, lightweight, on-the-fly augmentations are applied to the dataset, such as axis-aligned

flips, 90◦ rotations and elastic deformations. The probabilities and type of augmentation used

are summarized in Table 3.1.

3.1.5 Synthesized Datasets

We generate a dataset that closely resembles LSM data using synthesis and domain randomization

techniques. Here, we show example images (Fig. 3.3) using each of the methods, and show a

qualitative comparison with real LSM sections described in Section 2.2.1.

3.2 Spherical Harmonics

The spherical harmonics Y m
ℓ (θ, ϕ) are a set of functions which are defined on the surface of

a sphere. Here, θ is defined as the polar coordinate where θ ∈ [0, π] and ϕ is the azimuthal
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Augmentation Probability (p) Type

Spatial Crop 0.50 Image-Label
Affine Deformation 1.0 Image-Label
Bias Field 1.0 Image
Gaussian Noise 0.25 Image
k-space Spike 0.20 Image
Gamma Adjustment 0.80 Image
Gaussian Blur 0.80 Image
Rician Noise 0.20 Image
Gibbs Ringing 0.50 Image
Gaussian Sharpening 0.25 Image
Histogram Shift 0.10 Image
Axis-aligned Flip 1.0 Image-Label
90◦ Rotation 1.0 Image-Label
Elastic Deformation 1.0 Image-Label
Cutout Augmentation 0.20 Image-Label

Table 3.1: Augmentation Sequence. We provide a list of all augmentations, along with
their corresponding stochastic probability (p) of occurrence. Along with this, we also list

augmentations that are applied to images and image-label pairs.

Figure 3.3: Light-Sheet Microscopy and Synthesized Training Data. (a) Representative
slice from a light-sheet microscopy dataset of the human brain. Example synthetic images
generated using the (b) AnyStar , (c) AnyStar++ Gaussian, and (d) AnyStar++ Spherical

models. The AnyStar++ Gaussian and AnyStar++ Spherical models created the background
using a steerable Gaussian kernel and steerable kernel in the spherical harmonic basis, respectively.

coordinate which has its domain defined as the half-open interval ϕ ∈ [0, 2π). These definitions

are identical to that of a canonical spherical coordinate system, as illustrated in Figure 3.4.

These functions satisfy the spherical harmonic differential equation, which is obtained from

the angular component of Laplace’s equation [55, 76, 51]. A detailed proof of a closed form

representation of Y m
ℓ (θ, ϕ) is described in Appendix A.1.

In the following subsections, we visualize a set of spherical harmonic functions (3.2.1). We then

move to describing some important properties of orthogonality (3.2.2) and rotational symmetry

(3.2.4) which we leverage for realistic synthesis of light-sheet microscopy data.
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Figure 3.4: Spherical Coordinate System. The parameters of spherical harmonics are
defined on a sphere, and hence follow a similar coordinate convention as spherical coordinates.
Note that for a harmonic function, the magnitude of r = 1, since these functions are orthonor-

malized.

3.2.1 Visualization

In this section, we graphically visualize the spherical harmonics (Fig. 3.5), where each of the

phases are color coded. We transform the spherical coordinates to a Cartesian representation for

visualization given by

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

Figure 3.5: Spherical Harmonics in a Cartesian Plane. We visualize an example set of
spherical harmonic functions for (ℓ = 2). The colors here denote the analytical values of the

corresponding harmonic at each point.

Note that we consider the real part of the associated Legendre polynomials1 for visualization.

1Refer to Appendix A.1.
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An intuitive understanding of the surface plots can be thought of as plotting a surface which

satisfies the condition

Y m
ℓ (r) such that ||r||2 = 1

where r = (θ, ϕ). These parameters modulate how far we are situated from the origin. As

a result, when r is small, the surface is effectively shrunk closer to the origin, whereas it is

expanded away from the origin at larger values of r.

3.2.2 Orthogonality

Orthogonality of spherical harmonics is particularly useful since for a selected degree ℓ, no

polynomials are equivalent. That is, (Y m
ℓ ̸= Y n

ℓ ) where (m ̸= n). As a result, it is possible

to construct a unique basis of harmonics with desired directional properties by choosing the

appropriate multipliers. A detailed proof of this property is illustrated in Appendix A.2.

3.2.3 Parity

When inverted about the origin, certain algebraic properties of spherical harmonics of spatial

inversion are either even or odd. More generally, we can intuitively see that under inversion about

the origin, the radius r of the sphere remains invariant. However, the angles are transformed to

θ → π − θ

ϕ→ ϕ+ π

This parity transformation gives us

Y m
ℓ (θ, ϕ)→ Y m

ℓ (π − θ, ϕ+ π)

= eiℓϕeimπ sinm θ

= eiℓπY m
ℓ (θ, ϕ)

= (−1)ℓY m
ℓ (θ, ϕ)

Here, (−1)ℓ is the parity of the harmonic. This property comes of importance particularly when

we wish to represent steerable filters having antipodal symmetries. In particular, this allows us to

independently manipulate even-parity and odd-parity samples to achieve our desired directional

responses to filtered outputs.
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3.2.4 Rotations

Spherical harmonics form the set of eigenfunctions for the SO(3) rotation group. Formally,

consider a rotation R ∈ SO(3) applied to a spherical harmonic of degree and order (ℓ,m)

respectively. This operation yields a set of spherical harmonics that can be represented as a

linear combination of spherical harmonics having the same degree.

Y m
ℓ (θ′, ϕ′) =

ℓ∑
m′=−ℓ

ζmm′Y m′
ℓ (θ, ϕ)

where ζmm′ ∈ R(2ℓ+1) is a matrix containing constant multiples. This property [67, 42, 7] allows

spherical harmonics to encode rotational symmetries, hence lending a natural representation for

designing orientation-adaptive steerable filters.

3.3 Perlin Noise

Contrary to Gaussian noise, Perlin noise [64] is a type of gradient noise which is used for the

generation of a pseudo-random appearance. For this reason, Perlin noise has found an increasing

relevance in simulations of natural environments (e.g., terrain generation) in computer graphics

and video games [34, 47, 44, 94].

The key idea of Perlin noise is to generate a set of gradient vectors over a grid, which determine

a direction of deformation.

Without loss of generality, we consider a 2D point (x, y), which is then surrounded by 4 lattice

points:

p = {(i, j), (i+ 1, j), (i, j + 1), (i+ 1, j + 1)}

where i = ⌊x⌋ and j = ⌊y⌋. Each of these lattice points has a corresponding gradient vector gij

associated with them. For each of the corners, a dot product is computed between the gradients

and their corresponding distance vector.

σ = g · x

The corners of each of the grids is now interpolated using the dot products (σ). Instead of a

linear interpolation, a smoother gradient interpolation is achieved by what is known as a fade

function. This result is illustrated in Fig. 3.6.

For the label synthesis, we use Perlin noise to corrupt perfect spheres, which is illustrated in

Figure 3.7, for a randomly selected plane from a 1283 volume.
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Figure 3.6: Fade Function and Perlin Noise. The left panel here shows a plot of a standard
fade function x(t) = 6t5 − 15t4 + 10t3 which is used to smooth interpolation of image grids. The
right panel shows an example of Perlin Noise generated with a random seed = 1, in the 3rd

octave, which is used to determine the amount of texture observed.

Figure 3.7: Label Synthesis using Perlin Noise. (a) Randomly generated spheres having
a mean radius r = 12. (b) Perlin noise used for corrupting the uniformly generated spheres. (c)
Corrupted labels after using Perlin noise which provides a more realistic topological appearance

to the cell bodies.

3.4 Steerable Filters

Several low-level computer vision tasks require greater adaptive control over phase and orientation

in image filters. To achieve this, one computes filter responses at various orientations. A “basis”

of such steered filters is obtained by computing a linear combination of these. This allows for

computation of impulse responses from these filters at any arbitrary orientation in a n-dimensional

space.

We leverage these critical properties of steerable filters [27], by using them as directional smoothing

kernels when convolved with noise. This step helps us in synthesizing realistic backgrounds for

images acquired by light-sheet microscopy.

In the following sections, we show the effects of steering such filters. We experiment with a

Gaussian basis, as well as a spherical harmonic basis to take advantage of its properties of
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parities (Sec 3.2.3) and symmetricity.

3.4.1 Gaussian Filters

A 2-dimensional, symmetric Gaussian function G can be described in Cartesian coordinates by

the following expression:

G(x, y) = e−(x2+y2) (3.1)

To construct an orthogonal basis fromG, we compute a directional derivative along two orthogonal

axes positioned at 0◦ and 90◦ with respect to one another in a traditional right-handed coordinate

system. We denote these (first) derivatives as G0◦
1 and G90◦

1

G0◦
1 =

∂

∂x
G(x, y) = −2xG(x, y)

G90◦
1 =

∂

∂y
G(x, y) = −2yG(x, y)

Thus, for an arbitrary orientation of G, say θ, we can form a basis from the above orthogonal

components that spans the entire set of 2D filters, which we denote as Gθ
1.

Gθ
1 = cos (θ)G0◦

1 + sin (θ)G90◦
1

Note that care must be taken to normalize the basis function (in this case, G), to have a unity

integral over all space. In our case, we assume a scaling factor of 1, without loss of generality.

Fig. 3.8 shows a plot of the orthogonal impulse responses of G.

Figure 3.8: Orthogonal Components. (Left − Right) We show a symmetrically distributed
Gaussian filter of dimensions (9× 9), as represented by Eq. 3.1. The next panels illustrate the

orthogonal components of this filter, oriented at 0◦ and 90◦ respectively.

We extend this idea to a 3D Gaussian, since our goal is to synthesize image voxels. Consider the

following basis function with unit scaling factor:

G(x, y, z) = exp

(
−x

2 + y2 + z2

2σ2

)
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To construct an orthogonal basis, we consider three arbitrary Euler angular positions - {α, β, γ}.
Note that this is useful in defining a rotation matrix R ∈ SO(3), to directionally orient any filter

by transforming the described filters coordinates [75]. Hence, a 3D filter that spans the set of all

filters Gθ
1 can be represented in spherical coordinates as

Gθ
1 = Rα

xGx +Rβ
yGy +Rγ

zGz

Where each of the Gx, Gy, Gz denote the first orthogonal directional derivatives. Here, the

rotation matrices (R) are defined by standard angular rotations.

Rα
x =


1 0 0

0 cosα − sinα

0 sinα cosα

 Rβ
y =


cosβ 0 sinβ

0 1 0

− sinβ 0 sinβ

 Rγ
z =


cos γ − sin γ 0

− sin γ cos γ 0

0 0 1



We then convolve the steered filter Gθ
1 with Gaussian white noise to produce a background

that highlights visual features seen in brightsheet microscopy (Fig. 3.9). Note that the steering

angle used here is also randomly chosen, within the appropriate angular domains for each of the

individual axes.

Figure 3.9: Steered 3D Gaussian Kernel. (Left − Right) A slice of a symmetri-
cally distributed 3D Gaussian. We steer this kernel by arbitrary rotation angles (α, β, γ) =
(70.31◦,−1.62◦, 174.56◦) in the middle column. Finally, we use this kernel to convolve a
(128 × 128 × 128) voxel of white noise to create background corruptions which are charac-

teristic to light-sheet microscopy.

To synthesize a larger distribution of images, we add an additional degree of randomness by

sampling a 3D Gaussian kernels parameters from a random normal distribution (Fig. 3.10).

3.4.2 Spherical Harmonic Filters

To make effective use of the properties of spherical harmonics as described in Sec. 3.2, we project

a Gaussian kernel to a spherical harmonic basis. We describe the process of generating such a
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Figure 3.10: Random Normal Steered Gaussian. Instead of using a uniformly distributed
Gaussian for the kernel’s parameters, we sample values from a random normal distribution to
form a kernel of dimensions (7× 7× 7). We notice that a steered convolution using this kernel

gives directionally filtered salt and pepper noise.

kernel in Algorithm 1.

Algorithm 1 Generation of Steered Spherical Harmonic Filters

1: (Gx, Gy, Gz)← N (0, 1) ▷ Sample kernel from a random normal distribution
2: Sample random angles (α, β, γ) and constructR
3: Gθ′ ← G ·R ▷ Steer the kernel
4: r ←

√
x2 + y2 + z2 ▷ Convert Cartesian to Spherical coordinates

5: θ ← arccos z
r

6: ϕ← sgn(y) · arccos x√
x2+y2

7: Compute Y m
ℓ (θ, ϕ)

8: Gθ,ϕ ← Gθ′ · ℜ(Y m
ℓ (θ, ϕ)) ▷ Project to Spherical Harmonic Basis

Briefly, we begin by steering a Gaussian kernel with randomly sampled angles (α, β, γ) as

described in Sec. 3.4.1. The Cartesian representation of the Gaussian is then converted to a

spherical coordinate system, which is used to construct the corresponding harmonic basis. Now,

we project our steered Gaussian onto the harmonic basis by computing its matrix dot product.

Note that we only consider the real part of the harmonic basis to maintain a physically realizable

representation of the projected kernel. We illustrate a convolution performed by this kernel on

random noise in Figure 3.11.

3.5 Segmentation of Light-Sheet Microscopy Data

In this section, we train a StarDist3D model with the AnyStar++ Gaussian and AnyStar++

Spherical datasets. We subsequently perform segmentation on an example LSM dataset with the

Cellpose, AnyStar, AnyStar++ Gaussian, and AnyStar++ Spherical models, and qualitatively

compare the results. The source code and model weights are made publicly available.
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Figure 3.11: Spherical Basis Kernel. (a) A steered Gaussian kernel projected to a spherical
harmonic basis. (b) Result of convolving the resultant kernel with random Gaussian noise.

3.5.1 Modeling Training

We train a StarDist3D network for with the AnyStar++ Gaussian and AnyStar++ Spherical

datasets. In particular, we train a 5-resolution 3D U-Net [72] having 32 convolutional channels

per axis at the highest resolution (here, 643). A list of model names, with their corresponding

training dataset is summarized in Table 3.2. Each of the subsequent resolutions are halved from

the previous convolutional layer, i.e: {643, 323, 163, 83, 43}.

Data Generation Method Number of Images Generated Model Trained

AnyStar 27,000 StarDist3D
AnyStar++ Gaussian 27,000 StarDist3D
AnyStar++ Spherical 27,000 StarDist3D

Table 3.2: Summary of Models and Corresponding Synthetic Datasets.

We make use of AnyStar’s publicly available weights called AnyStar-Mix. For the remaining

models (AnyStar++ Gaussian, AnyStar++ Spherical), we train the model from scratch for

a total of 250, 000 iterations using the Adam optimizer [45] with an initial learning rate of

α = 2× 10−4, which is linearly decayed to 0 over the course of all iterations.

3.5.2 Model Inferences

In this section, we show a qualitative comparison of results obtained from randomly se-

lected slices from the dataset described in Section 2.2.1. This comparison includes Cellpose,

AnyStar-Mix, AnyStar++ Gaussian which simulates background using a steerable Gaussian
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filter and AnyStar++ Spherical where the background is simulated using a steered spherical

harmonic basis filter (Fig. 3.11).

Light-Sheet Image Cellpose AnyStar
AnyStar++

Gaussian

AnyStar++

Spherical

Figure 3.11: Qualitative Comparison of Zero-Shot Segmentation Models.

We also summarize the list of trained segmentation models, alongside their analyzed datasets in

Table 3.4.

Data Generation Method Model Data Analyzed

AnyStar-Mix StarDist3D Dandiset 000108
AnyStar++ Gaussian StarDist3D Dandiset 000108
AnyStar++ Spherical StarDist3D Dandiset 000108

Cellpose Cellpose Nuclei Model Dandiset 000108

Table 3.4: Summary of Segmentation of Light-Sheet Microscopy.

3.5.3 Putative Analysis

Since we do not have ground truth annotations for nuclei masks in the chosen dataset, we analyze

some of the mean geometric measures of the instance masks:

1. Nuclei Volume

2. Major Axis Length
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While we do not have access to the mean values of the aforementioned metrics for the given

dataset, we believe that appropriately re-scaling pixel space values to physical units could serve

as a plausible sanity check of segmentation quality. Note that all analyses done below is for a

randomly selected ROI of dimensions (64× 64× 64).

Nuclei Volume. As we do not know the exact shapes of nuclei a priori, we compute the volume

of each mask by estimating the volume of its convex hull. A distribution of nuclei volume is

plotted across all different segmentation models in Figure 3.12.

Figure 3.12: Distribution of Nuclei Volume. We show the distribution of nuclei volume
estimated from its convex hull, for the previously described models. The unit of volume measure

here is in px3.

Major Axis Length. This is computed using length of the major axis of the ellipse that has an

equivalent normalized second central moments as the described instance mask. The distribution

of major axis lengths of the computed instance masks is shown in Figure 3.13.

Figure 3.13: Distribution of Major Axis Length. We show the variation of the lengths of
major axes across the different models summarized earlier. The unit of measure of major axis

length is in px.
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3.6 Code and Data Availability

The source code for this project is available on GitHub at https://github.com/lincbrain/lsm-

segmentation.

3.7 Discussion

In this chapter we began by describing the image-label pair synthesis process using different

intensity models (Secs. 3.1.1, 3.1.2). We then moved to discuss some preliminary ideas about

spherical harmonics (Sec. 3.2) and described their properties which make them useful for

designing steerable filters (Sec. 3.4), capable of achieving symmetricity and forming a flexible

basis vector representation set. We then proposed a steerable filter based on a spherical harmonic

basis for synthesizing light-sheet microscopy images, and describe our algorithm in Sec. 3.4.2.

Finally, we conduct a qualitative analysis of the same model (StarDist3D [91]) trained with

our synthetic data and those by AnyStar, and show that our approach better captures the

variances inherent to light-sheet microscopy through directional and symmetric manipulation of

background signal noise. We also perform a rudimentary qualitative analysis of some geometric

measures of the segmented instance masks, and note that this could be a potential technique to

quantify the accuracy of segmentation models in the absence of ground-truth annotations.

https://github.com/lincbrain/lsm-segmentation
https://github.com/lincbrain/lsm-segmentation
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Discussion and Conclusions

In this thesis, we have developed and evaluated a distributed image segmentation workflow

tailored for large-scale datasets. In this effort, our primary objective was to reduce inference

times significantly, which is crucial for handling the ever-increasing volume of biological imaging

data. This is especially useful for scientists, when they wish to have faster feedback to iterate

over their experiments. We demonstrate, albeit with baby steps, the scalability of our approach,

indicating its potential for broader applications in HPC clusters (e.g., distributing computation

over multiple nodes). We also show some preliminary experimentation, profiling different tasks

in our proposed workflow, providing some insights into its performance.

While evaluating our stitching algorithm, we made use of IoU and nuclei count for evaluating

the quality of the algorithm. However, the caveat to this technique is that it is based on certain

heuristics, and hence may not necessarily translate to an accurate representation of an algorithms

performance. For instance, when we binarize volumes for computing IoU, we are no longer able

to quantify whether or not a false-join or a false-merge has taken place, since all instances have

been collapsed to a single identity. However, having some form of robust statistical measurements

that can operate in scenarios where there is no annotated data would be extremely crucial in

the field.

We also introduce a domain-randomized generative model for synthesizing a realistic light-sheet

microscopy dataset for training segmentation models. Here, we leverage some useful properties of

spherical harmonics to capture the variance in image acquisition of such data. We demonstrate

qualitatively how our synthesized dataset allows models to perform zero-shot segmentation on

unseen datasets, and surpass current state-of-the-art. However, due to lack of ground truth, it

becomes non-trivial to quantify our models performance. We make an attempt to quantify this

by estimating some key geometric characteristics of the instance masks which is less than ideal

for robust quantification.

37
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In summary, we believe that the following could be useful future avenues to explore:

• Distribution of computation across computation nodes in an HPC, and see how this scales

with dataset size.

• Robust quantification measures for estimating algorithmic performance in the absence of

ground-truth data.



Appendix A

Proofs and Derivations

Much of the proofs and derivations here have ideas that have been directly (or indirectly)

borrowed from Griffith’s textbook on Quantum Mechanics [30].

A.1 Spherical Polynomials

Consider the Laplacian in spherical coordinates.

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin2 θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
(A.1)

We denote the RHS of Equation A.1 as a function f parameterized by (r, θ, ϕ). Hence, this gives

us the following:

∇2f(r, θ, ϕ) = 0

To solve this, we observe that the LHS is can be decomposed into independent, individual

functions of each of the variables. Using the method of separation of variables [57] yields

f(r, θ, ϕ) = g(r)h(θ)k(ϕ)

Substituting this in A.1 and multiplying throughout with r2/g(r)h(θ)k(ϕ) gives

1

g(r)

d

dr

(
r2
dg

dr

)
+

1

h(θ) sin2 θ

d

dθ

(
sin θ

dh

dθ

)
+

1

k(ϕ) sin2 θ

d2k

dϕ2
= 0

This allows us to separate variables into two unique ordinary differential equations. As a result,

we note that each of the equations must be equivalent to a constant.
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1

k

d2k

dϕ2
=

1

g

d

dr

(
r2
dg

dr

)
+

1

h sin2 θ

d

dθ

(
sin θ

dh

dθ

)
= −m2 (A.2)

For reasons that become evident later, we transform the separation constant m, to ℓ(ℓ+ 1).

1

g

d

dr

(
r2
dg

dr

)
= −1

h

1

sin θ

d

dθ

(
sin θ

dh

dθ

)
+

m2

sin2 θ
= ℓ(ℓ+ 1)

Now, the resultant radial equation reduces to

r2
d2g

dr2
+ 2r

dg

dr
− ℓ(ℓ+ 1)g = 0 (A.3)

This is recognized to be an Euler equation [71], where the analytic solution is of the form g = rs.

We substitute g in Eq. A.3 to obtain the value of the exponent s.

r2 · s(s− 1)rs−2+2r · srs−1 − ℓ(ℓ+ 1)rs = 0

∴ s(s+ 1) = ℓ(ℓ+ 1) =⇒ s = ℓ or s = (−ℓ− 1)

Applying a similar idea to the angular equation, we have

1

sin θ

d

dθ

(
sin θ

dh

dθ

)
+

(
ℓ(ℓ+ 1)− m2

sin2 θ

)
h = 0

Changing variables from x→ cos θ and y → h(θ) reduces Equation A.1 to

(1− x2)d
2y

dx2
− 2x

dy

dx
+

(
ℓ(ℓ+ 1)− m2

sin2 θ

)
= 0

This is a differential equation representing associated Legendre polynomials [13]:

y(x) = Pm
ℓ (x); for ℓ ∈ {0, 1, 2, · · · } and m ∈ {−ℓ,−ℓ+ 1, · · · , ℓ− 1, ℓ}

where each of the Pm
ℓ (x) have the following closed form representation

Pm
ℓ (x) =

(−1)m

2ℓℓ!
(1− x2)m/2 dℓ+m

dxℓ+m
(x2 − 1)ℓ for m ∈ {−ℓ,−ℓ+ 1, · · · , ℓ− 1, ℓ}

Since Eq. A.2 is invariant to the sign of m, it follows that Pm
ℓ (x) and P−m

ℓ (x) have equivalent

solutions. Using this, it can be shown that

P−m
ℓ (cos θ) = (−1)m (ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)
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which is then used to construct a general solution to Eq. A.1.

f(r, θ, ϕ) =

{
rℓ

rℓ−1

}
Pm
ℓ (cos θ)

{
eimϕ

e−imϕ

}

where ℓ and m exist in their respective domains. In obtaining this solution, we can introduce

the spherical harmonics Y m
ℓ (θ, ϕ) as a function of the associated Legendre polynomials

Y m
ℓ (θ, ϕ) = (−1)m

√
(2ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)eimϕ

A.2 Orthogonality of Spherical Harmonics

In this section, we prove that a pair of spherical harmonics are orthogonal to one another over a

sphere.

Theorem A.1. For a set of spherical harmonics {Y m
ℓ , Y n

ℓ′ }, of degrees n and m respectively,

defined on a sphere of radius r the following must hold:∫
ω
Y m
ℓ Y n

ℓ′ dω = 0 (m ̸= n)

Or, spherical harmonics of varying degrees are orthogonal over a sphere, where dω = sin θ dθ dϕ,

which is the differential solid angle in spherical coordinates.

Proof. To trivialize the integral, we consider representing the spherical harmonics using Euler’s

formula [3]. Hence, we would like to express a spherical harmonic function in the form

Y m
ℓ (θ, ϕ) = (cos θ + i sin θ)m · Pm

ℓ (cosϕ) (A.4)

where P ℓ
m(·) is the associated Legendre polynomial. We note that a sphere of radius r centered

at the origin can be parameterized as

ψ(θ, ϕ) = ⟨r cos θ sinϕ, r cosϕ, r sin θ sinϕ⟩ for (θ, ϕ) ∈ [0, π]× [0, 2π]
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Using this, we can rewrite Eq. A.4. Without loss of generality, we set the radius of the sphere

r = 1, which gives us the following

Y m
ℓ =

(
x

sinϕ
+ i

z

sinϕ

)m

· Pm
ℓ (y)

= (x+ iz)m ·
Pm
ℓ (y)

sinm ϕ

= (x+ iz)m ·
Pm
ℓ (y)

(1− y2)m/2

Now, we can expand the domain ω across the domains of (θ, ϕ) to yield

I =

∫
ω
Y m
ℓ Y n

ℓ′ dω =

∫ π

0

∫ 2π

0

(
eimθ · P ℓ

m(cosϕ)
)
·
(
einθ · Pn

ℓ′ (cosϕ)
)
dθ sinϕ dϕ

This can integral can be grouped into 2 independent integrals, I1 and I2.

I =

(∫ π

0
Pm
ℓ (cosϕ) · Pn

ℓ′ (cosϕ) sinϕ dϕ

)
︸ ︷︷ ︸

I1

·
(∫ 2π

0
ei(m−n)θdθ

)
︸ ︷︷ ︸

I2

Now, we observe that I2 = 0 whenever m ̸= n:

I2 =
1

i(m− n)
ei(m−n)θ

∣∣∣∣2π
0

= 0

and the result for m ̸= n follows.
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